Print Date: 7/29/14 Course Objectives/Course Outline Spokane Community College

Course Title:AC Motors and AlternatorsPrefix and Course Number:ELMT 133Course Learning Outcomes:By the end of this course, a student should be able to:

- describe the difference between single- and three- phase alternators
- connector alternators in wye and delta configurations
- properly parallel alternators
- calculate load characteristics and power factors under various load conditions
- perform load tests on AC motors and compute speed regulation

*Two, three, and four credit class content will be determined from input provided by faculty from individual programs which have specific electrical requirements.

Course Outline:

- I. Alternators
 - A. Theory of Operation
 - 1. revolving armature
 - 2. revolving field
 - 3. single-phase
 - 4. poly-phase
 - B. Characteristics
 - 1. unity power factor load
 - 2. lagging power factor load
 - 3. leading power factor load
 - C. Paralleling Alternators
 - 1. frequency
 - a) speed of prime mover
 - 2. phase voltage
 - a) excitation current
 - 3. phase sequence
 - a) three lamp method
 - 4. in-phase
 - a) all dark method
 - b) two bright-one dark method
 - c) oscilloscope
 - d) synchroscope
 - D. Applied Problems
 - 1. Saturation Curves of an Alternator
 - 2. Effect of Speed on an Alternator
 - 3. Wye and Delta Connections
 - 4. Load Characteristics of an Alternator
 - 5. Losses and Efficiency of an Alternator
 - 6. Paralleling Alternators

- II. Single-Phase AC Motors
 - A. Theory, Operation, and Types of Motors
 - 1. split-phase
 - a) induction start-induction run
 - b) capacitor start-induction run
 - c) permanent capacitor
 - d) two-capacitor
 - B. Applied Problems of Single-Phase Motors
 - 1. rotation
 - 2. starting and running characteristics
 - 3. assembly and disassembly of split-phase motors
- III. Three-Phase AC Motors
 - A. Theory and Operation
 - 1. squirrel
 - 2. wound rotor motors
 - 3. synchronous motors
 - B. Applied Problems of Three-Phase Motors
 - 1. rotation
 - 2. starting and running characteristics
 - 3. losses and efficiency of induction motors
 - 4. starting and synchronizing of synchronous motors
 - 5. power factor correction with synchronous motors