Print Date: 7/29/14 Course Objectives/Course Outline Spokane Community College

Course Title:	AC Theory
Prefix and Course Number:	ELMT 123

Course Learning Outcomes:

By the end of this course, a student should be able to:

- define various concepts of alternating voltage and current.
- define inductance, capacitance, and calculate inductive and capacitive reactance.
- define effective voltage and effective current and use Ohm's law in purely resistive, purely inductive, and purely capacitive circuits.
- understand the effects of inductance, capacitance, and resistance in a circuit.

Course Outline:

- I. Alternating Current
 - A. Uses
 - B. Electric Power Transmission
 - C. Characteristics
 - 1. frequency
 - 2. wave length
 - 3. phase and phase difference
 - 4. values of AC voltage and current
 - a. peak
 - b. average
 - c. effective
 - D. An AC Generator
 - 1. voltage and current production
- II. AC Waveforms
 - A. Angle Motion/Displacement
 - B. AC vs. DC Waveforms
 - C. Sine Waves
 - 1. generation
 - D. Square Waves
 - 1. generation
 - E. Sawtooth Waves
 - F. Fluctuating DC
 - G. Trigonometric Functions
 - H. Vectors
 - 1. definition
 - 2. working with vectors
- III. Resistive AC Circuits
 - A. Current and Voltage
 - B. Phase Relationships
 - C. Power
 - D. Eddy Currents and Skin Effect
 - E. Solving Problems
 - F. Circuit Diagrams
 - G. Troubleshooting
- IV. Effects of Electromagnetism
 - A. Magnetic Field Around a Conductor

- B. Induced EMF
 - 1. determining factors
- C. Magnetic Fields Created by DC
- D. Self-Induction
- E. Magnitude of Self-Induced EMF
- F. Effect of Conductor Shape
- V. Induction
 - A. Inductors
 - B. Factors Determining Induction
 - C. Values
- VI. Inductive AC Currents
 - A. Inductive Reactance
 - B. Series and Parallel Inductors
 - C. Solving Problems
- VII. Capacitive Circuits
 - A. Charging a Capacitor
 - B. Units of Capacitance
 - C. Plate Surface Area
 - D. Dielectric
 - E. Voltage Relationships
 - F. Series and Parallel Capacitors
- VIII. Resonance Circuits
 - A. Power Factor Calculation
 - B. Component Installation
 - C. Graph Leading and Lagging Power Factors
 - D. Circuit Characteristics
- IX. Lab Experiments
 - A. Fuse Testing
 - B. Circuit Diagrams and Troubleshooting
 - C. Series Circuits
 - 1. resistive
 - 2. inductive
 - 3. capacitive
 - 4. resistive and inductive
 - 5. resistive and capacitive
 - 6. inductive and capacitive
 - 7. resistive, inductive, and capacitive
 - D. Parallel Circuits
 - 1. resistive
 - 2. inductive
 - 3. capacitive
 - 4. resistive and inductive
 - 5. resistive and capacitive
 - 6. inductive and capacitive
 - 7. resistive, inductive, and capacitive
 - E. Combination Series/Parallel Circuits
 - F. Resonance Circuits
 - 1. series
 - 2. parallel
 - G. Power Factor Correction
 - 1. static capacitors
 - H. AC Meter Connections

- 1. voltmeters
- 2. ammeters
- 3. wattmeters