Course Objectives/Course Outline Spokane Community College

Course Title: Electrical Theory

Prefix and Course Number: ELMT 112

Course Learning Outcomes:

By the end of this course, a student should be able to:

- be familiar with electrical words and terms.
- describe the action of free electrons.
- list six methods of producing electricity.
- describe the effects of magnets and magnetism.
- calculate using the principles of Ohm's Law.
- differentiate between series and parallel circuit requirements.
- read resistor color codes.
- use a multimeter to measure current and voltage.

Course Outline:

- I. Structure of Matter
 - A. Elements
 - B. Compounds
 - C. Molecules
 - D. Atoms
- II. Atomic Theory
 - A. Atom Structure
 - 1. nucleus
 - 2. proton
 - 3. electron
- III. Electrical Charges
 - A. The Law of Charges
 - B. Atomic Charges
 - 1. charges materials
 - 2. charges by contact
 - 3. charges by induction
 - 4. neutralizing a charge
 - C. Attraction and Repulsion
 - D. Electrostatic Fields
- IV. Electron Theory
 - A. Electron Orbits
 - 1. orbital shells
 - 2. shell capacity
 - B. The Valance Shell
 - C. Electron Energy
 - D. Producing Electricity
 - E. Conductors
 - F. Insulators
 - G. Semiconductors
 - H. The Effect of Atomic Bonds
- V. How Electricity is Produced

- A. Friction
- B. Chemicals
- C. Pressure
- D. Heat
- E. Light
- F. Magnetism
- VI. Electric Current
 - A. Free Electrons
 - B. Electron Movements
 - C. Current Flow
 - 1. voltage
 - 2. ampere
 - 3. resistance
- VII. Effects of Electricity
 - A. Chemical Activity
 - B. Pressure
 - C. Heat
 - D. Light
 - E. Magnetism
- VIII. Magnetism
 - A. Magnetism and the Electron
 - B. Magnetic Molecules
 - C. Magnetic Materials
 - D. Magnetizing
 - E. Demagnetizing
 - F. The Earth's Magnetic Field
 - G. Magnetic Polarities
 - H. Magnetic Compass
 - I. Laws of Magnetism
 - J. Magnetic Fields
 - K. Lines of Force
 - L. Interaction of Magnetic Fields
- IX. Electromagnetism
 - A. As a Conductor
 - B. Field Intensity
 - C. Field Interaction
 - D. Electromagnetism in a Coil
 - E. The Magnetic Core
 - F. The Magnetomotive Force
- X. Electricity and Magnetism at Work
 - A. Incandescent Lights
 - B. Electric Heaters
 - C. Electromagnetic Relay
 - D. Electric Motors
 - E. The Meter
 - F. Basic Generators
- XI. The Electric Circuit
 - A. Direct Current
 - B. Switches
 - C. Loads
 - D. Power Sources
 - E. Control of Current

- F. Conductance
- XII. Resistance
 - A. Rate of Resistance
 - B. Units of Resistance
 - C. Wire
 - 1. resistance
 - 2. load
 - D. Loads and Power Sources
 - E. Circuit Resistance

- F. Measuring the Resistance
 - 1. connecting the meter
 - 2. zero adjust
 - 3. reading the scale
 - 4. using the ohmmeter to troubleshoot

XIII. Resistors

- A. Use
- B. Tolerance
- C. Types
 - 1. composition
 - 2. wire-wound
 - 3. film
 - 4. fixed
 - 5. adjustable
 - 6. variable
- D. Resistor Color Codes

XIV. Ohm's Law

- A. Equations
- B. Calculating Current
- C. Calculating Resistance
- D. Calculating Voltage

XV. Meters

- A. Measuring Current
 - 1. connecting the meter into the circuit
 - 2. clamp-on ammeter
 - 3. reading the scale
 - 4. useable part of the scale
- B. Measuring Voltage
 - 1. connecting the meter into the circuit
 - 2. multiplier resistors
 - 3. ohms per volt rating
 - 4. reading the scale
- C. Miscellaneous Meters
 - 1. wheatstone bridge
 - 2. power meters
 - 3. multimeters
 - 4. special meters

XVI. Power

- A. Units of Power
- B. Power Losses
- C. Power Ratings
 - 1. incandescent lamps
 - 2. resistors
 - 3. typical
- D. The Kilowatt-Hour

XVII. Series Circuits

- A. Basic Electrical Units
- B. Series Loads
- C. Series Power Sources
- D. Series-Opposing Power Sources
- E. Power Consumption
- F. Voltage Drops

- G. PolarityH. Potentiometer Circuit
- I. Open CircuitsJ. Short Circuits
- K. The Fuse
- L. Circuit Breakers