Course Title: Photonics I Prefix and Course Number: ELECT 235

Course Learning Outcomes: By the end of this course, a student should be able to:

- -Describe the properties of light
- -Handle optical elements
- Describe the relationship between light rays and wave fronts
- -Safely operate lasers
- -Describe the properties of basic types of optics
- -Explain how light is polarized
- -Differentiate between spontaneous and stimulated radiation
- ---Explain the mechanism of coherent light generation

Course Outline:

- I. Properties of Light
 - A. Wavelength, Frequency, Speed, Period, Amplitude, Energy
 - B. Phase, Coherence, and Polarization
 - C. Wave vs Particle
 - D. Electromagnetic spectrum
 - E. Reflection and Refraction
 - F. Diffraction and Interference.
 - G. Light sources
 - H. Scattering, absorption, and transmission
 - I. Safety procedures
- II. Optical Handling and Positioning
 - A. Optical materials
 - B. Thermal, mechanical, and chemical properties
 - C. Anti-reflection coatings and filters
 - D. Mountings
 - E. Translational and rotational stages
 - F. Inspection, cleaning, and storage
- III. Laser and Photonics Safety
 - A. Monochromaticity, directionality, and coherence
 - B. Non-beam hazards
 - C. Human eye hazards
 - D. Laser classifications
 - E. Maximum permissible exposure
 - F. Laser hazard controls and warning signs
 - G. Safety precautions

- IV. Basic Optical Principles and Devices
 - A. Light rays and light waves
 - B. Law of reflection and Snell's law of refraction
 - C. Index of refraction
 - D. Total internal reflection
 - E. Gaussian or paraxial optics
 - F. Collimated light and the focal points
 - G. Ray-tracing techniques
 - H. Thin lens and thick lens
 - I. Focal length of a thin lens
 - J. Light rays and wave fronts
 - K. Phase angle
 - L. Superposition
 - M. Huygens' principle
 - N. Constructive and destructive interference
 - O. Fraunhofer (far-field) and Fresnel (near-field) diffraction
 - P. Diffraction-limited optics
 - Q. Brewster's angle
- V. Principles of Lasers
 - A. Spontaneous and stimulated radiation
 - B. Energy level diagrams
 - C. Coherent light generation
 - D. Gain in a laser
 - E. Longitudinal modes and mode separation
 - F. TEM modes
 - G. Laser cavity configurations and losses
 - H. Laser beam properties
 - I. Types of lasers

Material Covered:

- Properties of Light
- Optical Handling and Positioning
- Laser and Photonics Safety
- Basic Optical Principles and Devices
- Principles of Lasers