Course Title:BiochemistryPrefix and Course Number:Chem 260

Course Learning Outcomes:

By the end of this course, a student should:

- Understand the chemical foundations of biochemistry
- Develop a working knowledge of biological systems and processes
- Recognize that metabolism is a highly integrated network of chemical reactions
- Be able to identify the different classes of biomolecules and their functions within biological systems
- Understand protein functions and the correlation between protein conformation and biological activity
- Be able to describe how enzymes catalyze reactions in terms of kinetics and mechanistic strategies
- Understand the structure of biological membranes and be able to describe membrane transport
- Be able to recognize and describe the metabolism of carbohydrates, lipids, and proteins
- Understand and be able to explain how metabolic pathways are regulated
- Develop the ability to predict how environmental changes effect the rates of metabolic pathways
- Be able to describe gene expression and how the process is regulated
- Understand the endocrine system and be able to predict hormonal changes and effects on target cells when environmental conditions vary
- Understand the immune system and different immune responses

Course Outline:

- I. Chemical Components and Structure of the Cell
 - A. Function and Biological Classification
 - i. Biomolecules and Chemical Reactions of Life
 - ii. Principal Metabolic Strategies
 - iii. Role of Membrane
 - iv. Organelle Functions
 - v. Five Kingdoms Fungi, Plants, Animals, Protists (unicellular eukaryotes), and Monera (prokaryotes)
 - vi. Catabolic and Anabolic Pathways
 - vii. Biological Energy Transformations
 - B. Water
 - i. Polarity
 - ii. Hydrogen Bonding
 - iii. Solvent Properties
 - iv. pH and Acidity
 - v. Biological Buffers
 - C. Amino Acids, Peptides, and Proteins
 - i. Types of Amino Acids (hydrophobic, polar, acidic, and basic)
 - ii. pka and lonization
 - iii. Formation of Peptide Bonds
 - iv. Polypeptide Chains (N-terminus, C-terminus, main chain, and side chains)

- Primary, Secondary, Tertiary, and Quaternary Structure in ٧. Polypeptides
- vi. Protein Folding
- Protein Conformation and Activity vii.
- Conditions that Cause Protein Conformational Changes viii.
- ix. Denaturation
- Fibrous, Membrane, and Globular Proteins х.
- **Protein Functions** xi.
- xii. Structure and Function of Myoglobin, Hemoglobin, Serum Albumin, Glucokinase, Growth Hormone, Actin, Immunoglobulin and Collagen)
- D. Enzymes
 - Enzyme Structure and Mechanisms i.
 - ii. **Enzyme Kinetics**
 - iii. Factors that Affect Enzyme Activity
 - Metabolic Regulation (temperature, pH, substrate concentration, iv. enzyme concentration, competitive inhibitors, allosteric inhibitors, allosteric activators, covalent modification, and genetic control) ٧.
 - Vitamins, Cofactors, and Coenzymes
- E. Carbohydrates
 - Classification of Carbohydrates i.
 - Chemical and Physical Properties of Carbohydrates ii.
 - iii. Formation of Disaccharides and Polysaccharides
 - Structure of Disaccharides and Polysaccharides iv.
 - Glycoproteins v.
- F. Lipids
 - Structure and Classification of Lipids i.
 - Fatty Acids, Waxes and Triacylglycerols ii.
 - iii. Glycerophopholipids
 - **Sphingolipids** iv.
 - Glycolipids v.
 - vi. Steroids
 - Fat Soluble Vitamins vii.
 - Prostaglandins viii.
- G. Biological Membranes
 - Fluid Mosaic Model i.
 - ii. Lipid Bilayer
 - Membrane Proteins (integral, peripheral, and anchored) iii.
 - Membrane Fluidity (effects of lipid unsaturation and chain length) iv.
 - Effects of Cholesterol v.
 - Membrane Transport (passive diffusion, facilitated diffusion, active vi. transport, exocytosis and endocytosis)
- H. Nucleic Acids
 - Common Bases i. -
 - Nucleosides and Nucleotides ii.
 - iii. DNA
 - RNA iv.
- П. Metabolism
 - A. Carbohydrate Metabolism and Regulation
 - Glycolysis i.
 - ii. Citric Acid Cycle (Tricarboxylic Acid Cycle or Krebs Cycle)
 - Oxidation Phosphorylation and the Electron Transport Chain iii.
 - Thermogenin and Non-Shivering Thermogenesis iv.
 - Pentose Phosphate Pathway v.
 - Gluconeogenesis vi.

- vii. Cori Cycle
- viii. Glycogen Metabolism (Glycogenesis and Glycogenolysis)
- ix. Cellular and Hormonal Regulation of Carbohydrate Metabolism
- B. Lipid Metabolism and Regulation
 - i. Lipolysis
 - ii. Lipid Transport (chylomicrons, serum albumin, and lipoprotein complexes)
 - iii. Formation of acyl CoA and Transport into Mitochondria
 - iv. Beta Oxidation
 - v. Catabolism of Odd-Number Fatty Acids and Unsaturated Fatty Acids
 - vi. Lipogenesis
 - vii. Synthesis of Triacylglycerols
 - viii. Ketogenesis
 - ix. Synthesis of Steroids
 - x. Synthesis of Membrane Lipids
 - xi. Cellular and Hormonal Regulation of Lipid Metabolism
- C. Amino Acid and Polypeptide Metabolism and Regulation
 - i. Cellular Proteolysis (lysosomes and ubiquitin-proteasomes)
 - ii. Amino Acid Degradation (transamination and deamination)
 - iii. Urea Cycle
 - iv. Nitrogen Molecules Produced from Amino Acid Catabolism
 - v. Amino Acid Synthesis
 - vi. Amino Acid Derivatives (serotonin, dopamine, and epinephrine)
 - vii. Cellular and Hormonal Regulation of Amino Acid and Polypeptide Metabolism
- D. DNA, RNA, and Protein Synthesis
 - i. DNA Replication
 - ii. DNA Repair
 - iii. Transcription
 - iv. Post-Transcriptional Modification of RNA
 - v. Translation
 - vi. Post-Translational Modifications
 - vii. Regulation of Transcription, Post-Transcription, Translation, and Post-Translation
- III. Complex Molecular Processes
 - A. Molecular Immunology
 - i. Types of Pathogens
 - ii. Types of Antigens
 - iii. Innate Immune Response
 - iv. Adaptive Immune Response
 - B. Hormone Function
 - i. Endocrine System (endocrine organs, hormones, and target cells)
 - ii. Release of Hormones
 - iii. Hormone Effect on Target Cells
 - iv. Interaction with Immune System
 - v. Regulation of Blood Glucose